

ON Engineering Bold Science for Clean Energy

Jerrod Hohman, PE Director of Engineering

NETL CO₂ Capture Technology Meeting August 22-26, 2011

ION Engineering Boulder, CO

Mission

 Solvent development for efficient low cost separation of CO₂ from industrial gas streams

Markets

- CO₂ capture from flue gas and industrial emissions
- CO₂ removal from natural gas (NG sweetening)

Technology

- Non-aqueous, non-volatile amine solvents
- Background intellectual property secured

DOE/NETL Project Overview

- 20 months (Oct, 2010 May, 2012)
- Key activities/objectives
 - Solvent testing & validation
 - Laboratory Pilot construction & operation
 - Simulation model development
 - Economic/operational analysis for commercial scale development
- \$4M project; \$3M funded by DOE

Project participants

Phase 2 Objectives

- Solvent development
 - Screen prospects
 - Physical characterizations
- Process optimization for specific solvent(s)
 - Process simulation development
 - Lab pilot unit operations
 - Process design studies
- Technical and economic analysis
 - Design basis for reference case power plant
 - Preliminary process design
 - CAPEX and OPEX estimates
 - Impact on COE estimate

Fundamental Science

ION's technology replaces the water in traditional amine solutions with a low volatility, non-aqueous solvent

Advantages

- Low solvent vaporization = lower regeneration energy
- Higher solution carrying capacity = lower circulation rates and smaller CAPEX
- Process flow similar to traditional amines = easy retrofit installation

Challenges

- Non-aqueous solvents can have higher liquid viscosity
- Proprietary solvents are more expensive than water
- Thermal and chemical instability of amines and non-aqueous solvents

Flow Schematic

Lab Pilot Unit

- Packed absorber
- Two-stage flash regeneration
- Online IR CO₂ gas analyzer
- Absorber intercooler
- Closed-loop circulation
- Adjustable inlet gas composition

Circulation Rate: Up to 9 gph

Gas Flow Rate: Up to 200 SLPM

Absorber Pressure: Up to 345 kPa

Regeneration Flash Temp: Up to 120 C

Progress and Current Status

- Demonstrated CO₂ absorption and desorption in a continuous process with our first generation solvent
 - Measured the solvent carrying capacity
 - Investigated the impacts of solvent viscosity
- Validated a process simulation with the lab pilot unit
 - Estimated the required solvent regeneration energy
- Identified degradation in first generation solvents
 - Initiated a targeted development program for second generation solvents

Carrying Capacity

Solvent	Molar Carrying Capacity	Volumetric Carrying Capacity
Aqueous Amine	1.00	1.00
Solvent A	0.92	0.88
Solvent B	0.92	0.93
Solvent C	1.25	1.07

Normalized carrying capacities

- First generation solvents are limited in carrying capacity
- Second generation solvents are showing improvement

Transport and Viscosity

Even with the highest viscosity solvent we are near equilibrium in the absorber and regeneration systems at operating conditions

Regeneration Energy

	Aqueous Amine	Solvent A	Effect
Vaporization Energy	1.0	0.4	+
Sensible Heat	1.0	0.7	\leftrightarrow
Heat of Reaction	1.0	1.3	?
Total Energy	1.0	0.8	+

Solvent A shows:

- 19% decrease in total regeneration energy
- 12.5% decrease in net heat input

Solvent Development: Stability

Fractional Carrying Capacity

Aqueous amine carrying capacity, for reference

First generation solvent showed significant loss of carrying capacity

Second generation solvents show improved stability

Accelerated (30X) aging Isothermal 125°C, CO₂ loaded, closed system

ION Engineering 4-8-2011 12

Solvent Economics

Solvent A

Costly solvent with

degrading performance

Solvent B
Expensive solvent with stable performance

Solvent C
Promising combination
of solvent cost and
performance

Commercialization Paths & Objectives

- Coal and NGCC Carbon Capture
 - Retrofit aqueous amine units
 - New construction more efficient, less capital intensive units
 - Commercial Objectives:
 - > 90% CO₂ Capture; < 35% increase in COE
- Natural Gas Treating
 - Retrofit existing aqueous amine units
 - New construction more efficient, less capital intensive units
 - Commercial Objectives
 - > 10% decrease in annual OPEX; no increase in CAPEX

Commercialization Timeframe

	'11	'12	'13	'14	'15	'16	'17	'18
Coal Fired Flue Gas								
Simulation and Lab Pilot Testing								
1-5 MW Field Pilots								
50-100 MW Demonstrations								
NG Fired Flue Gas								
Simulation and Lab Pilot Testing								
1-5 MW Field Pilots								
50-100 MW Demonstrations								
Natural Gas Treating								
Simulation and Lab Pilot Testing								
Small scale commercial testing								
Commercial exploitation								

Acknowledgements

